CAMOCIM CEARÁ

Bem-aventurados os mansos, porque eles herdarão a terra; Bem-aventurados os que têm fome e sede de justiça, porque eles serão fartos; Bem-aventurados os misericordiosos, porque eles alcançarão misericórdia; Bem-aventurados os limpos de coração, porque eles verão a Deus; Bem-aventurados os pacificadores, porque eles serão chamados filhos de Deus; Bem-aventurados os que sofrem perseguição por causa da justiça, porque deles é o reino dos céus; Bem-aventurados sois vós, quando vos injuriarem e perseguirem e, mentindo, disserem todo o mal contra vós por minha causa.(Mt.5)

quinta-feira, 5 de abril de 2012

PROVA E GABARITO DE PORTUGUÊS NO LINK

http://camocim.isabel.zip.net/arch2012-02-01_2012-02-29.html

PRATIQUE MATEMÁTICA

Problemas I
    Para resolver problemas algebricamente, basta aplicar seus conhecimentos adquiridos em equações.
    Situação real » problema » interpretação » equacionamento»  resolução » resposta
Exemplos:
1) A soma de dois números é 51 e a diferença entre eles é 9. Quais são estes números?
   Seja x o número maior e y o número menos:
   x+y=51
   x-y=9
   Pelo método da adição, somamos ambas as equações, eleminando a variável y.
   x+x+y-y=60  »  2x=60  »  x=30
   Substituindo na equação:
   x-y=9  »  30-y=9  »  y=21
   Logo, os números são 30 e 21.

2) A idade de um pai é 6 vezes a idade do filho. A soma das idades é igual a 35 anos. Qual a idade de cada um?
   Sendo a idade do pai igual a x e a idade do filho igual a y:
   x=6y ....... I
   x+y=35 ... II
   Pelo método da substituição, substituimos a equação I em II.
    6y+y=35  »  7y=35  » y=5
    Substituindo o resultado obtido na equação I:
    x=6y  »  x=6.5  »  x=30
   Logo, a idade do pai é de 30 anos e a do filho de 5 anos.
3) Uma fração é igual a 3/5. Somando-se 2 ao numerador, obtém-se umanova fração, igual a 4/5. Qual é a fração?
    Sendo x o numerador e y o denominador:
      »  5x=3y  [*multiplicando em cruzes ]

      »  5(x+2)=4y  »  5x+10=4y
    5x-3y=0 ..... I
    5x-4y=-10 ... II
    Multiplicando a equação I pot -1 para podermos eliminar uma variável pelo método da adição:
    -5x+3y=0 ... I
     5x-4y=-10 .. II
       -y = -10  »  y=10
    Substituindo o valor de y encontrado:
      5x=3y  »  5x=3.10  »  5x=30  »  x=6
    Logo, a fração é 6/10. FONTE:EXATAS

CIÊNCIAS PARA O CONCURSO

As membranas protetoras do cérebro
Por ser um órgão tão importante, o cérebro precisa de boa proteção contra acidentes. Ficando em pé, o ser humano mantém o cérebro e a cabeça afastados de choques e batidas. Mesmo assim, é necessária uma proteção muito confiável. Por isso o cérebro fica alojado no crânio, uma dura caixa óssea.
Embora de paredes finas, o crânio é muito resistente devido a sua forma arredondada. Uma das formas mais fortes que se conhece é uma bola rígida. Um ovo, por exemplo, é extremamente resistente, considerando-se como é fina sua casca. Assim, o mole e delicado cérebro é protegido contra danos externos diretos pelo resistente crânio. Entretanto, mesmo sendo o crânio rígido e forte, um abalo violento poderia balançar o cérebro e causar-lhe danos. É preciso, então, maior proteção, que é dada por três membranas, denominadas meninges, que recobrem completamente o cérebro. A membrana mais externa é chamada de dura-máter, que fornece uma boa proteção e apoio devidos a sua constituição forte e coriácea.
Junto ao cérebro há uma outra membrana, denominada pia-máter, muito mais fina, que acompanha cada depressão e cada elevação da superfície do cérebro. Entre essas duas membranas há uma terceira, de constituição esponjosa, a aracnóide. Os espaços desta membrana são preenchidos por um liquido no qual flutua todo o cérebro, fornecendo a camada protetora final. Há ainda grandes espaços dentro do cérebro, que também são preenchidos com o mesmo liquido da aracnóide, de modo que o delicado tecido do cérebro não se deforma quando movemos nossa cabeça.
http://camocim.paulina.zip.net/CONCURSO DE CAMOCIM.MAIS



Escrito por ISABEL-F.M.I.TORRES.FROTA às 07h17
[ (0) Comente  ] [ envie esta mensagem ] [ ]




CONTEÚDO DE CIÊNCIAS PARA O BÁSICO I

O sistema linfático

Além do sistema cardiovascular (circulatório) para a circulação do sangue, o corpo humano possui outro sistema de fluxo de líquido: o sistema linfático.
O sistema linfático compreende o conjunto formado pela linfa, pelos vasos linfáticos e órgãos como os linfonodos, o baço, o timo e as tonsilas palatinas.  A linfa é um líquido claro, ligeiramente amarelado, que flui lentamente em nosso corpo através dos vasos linfáticos. Parte do plasma sanguíneo extravasa continuamente dos vasos capilares, formando um material líquido entre as células dos diversos tecidos do organismo – o líquido intercelular ou intersticial.
Uma parte desse líquido intercelular retorna aos capilares sanguíneos, carregando gás carbônico e resíduos diversos. Outra parte – a linfa – é recolhida pelos capilares linfáticos. Os capilares linfáticos transportam a linfa até vasos de maior calibre, chamados vasos linfáticos. Esses vasos semelhantes às veias, por sua vez, desembocam em grandes veias, onde a linfa é liberada, misturando-se com o sangue. Ao longo do seu trajeto, os vasos linfáticos passam pelo interior de pequenos órgãos globulares, chamados linfonodos. Os vasos linfáticos passam ainda por certos órgãos, como as tonsilas palatinas (amídalas) e o baço.
O sistema linfático não possui um órgão equivalente ao coração. A linfa, portanto, não é bombeada como no caso do sangue. Mesmo assim se desloca, pois as contrações musculares comprimem os vasos linfáticos, provocando o fluxo da linfa.
Os vasos linfáticos possuem válvulasque impedem o refluxo (retorno) da linfa em seu interior: assim, ela circula pelo vaso linfático num único sentido. O sistema linfático auxilia o sistema cardiovascular na remoção de resíduos, na coleta e na distribuição de ácidos graxos e gliceróis absorvidos no intestino delgado e contribui para a defesa do organismo, produzindo certos leucócitos, como os linfócitos.
 
 Sistema Urinário

O que não é assimilado pelo organismo
O que o organismo não assimila, isto é, os materiais inúteis ou prejudiciais ao seu funcionamento, deve ser eliminado.
  • Observe, durante 24 horas, tudo o que o seu corpo elimina - os resíduos - certamente constarão:fezesurinasuor...
Os materiais desnecessários ao funcionamento do seu corpo e por ele expelidos são iguais?
-Não. Há água, substâncias sólidas (nas fezes) etc.

Nossas células produzem muitos resíduos que devem ser eliminados (excretados) do organismo. Esses resíduos são chamados excretas.
Os resíduos formados a partir das reações químicas que ocorrem no interior das células podem ser eliminados através:
  • do sistema respiratório (gás carbônico)
  • da pele (suor)
  • do sistema urinário (urina)

A pele e o sistema urinário encarregam-se de eliminar de nosso organismo os resíduos das atividades das células e também as substâncias que estão em excesso no sangue, expelindo-os sob forma de suor (pela pele) e de urina (pelo sistema urinário). O sistema respiratório encarrega-se de eliminar de nosso organismo o gás carbônico.
Não confunda fezes com excretas!
As fezes são formadas principalmente pelo restos de alimentos não digeridos; os excretas são produtos das atividades das células e também substâncias que estão em excesso no sangue.
Suor
O suor é um líquido produzido pelasglândulas sudoríparas, que se encontram na pele. Existem cerca de dois milhões de glândulas sudoríparas espalhadas por nosso corpo; grande parte delas localiza-se na fronte, nas axilas, na palma das mãos e na planta dos pés.
O suor contém principalmente água, além de outras substâncias, comouréiaácido úrico e cloreto de sódio(o sal de cozinha). As substâncias contidas no suor são retiradas do sangue pelas glândulas sudoríparas. Através de canal excretor - o duto sudoríparo - elas chegam até a superfície da pele, saindo pelos poros. Eliminando o suor, a atividade das glândulas sudoríparas contribui para amanutenção da temperatura do corpo.
 
homem é um animal homeotérmico, isto é, mantém a temperatura do corpo praticamente constante, ao redor de 36,5°C. Quando praticamos algum exercício físico (futebol, corrida, levantamento de objetos pesados, etc.), a grande atividade muscular produz muito calor e a temperatura do corpo tende a aumentar, então eliminamos suor; a água contida no suor se evapora na pele, provocando uma redução na temperatura do ar que a circunda. Isso favorece as perdas de calor do corpo para o ambiente, fato que contribui para a manutenção da temperatura do nosso corpo.
 Sistema Nervoso

Na nossa relação com o mundo, o tempo inteiro somos estimulados e respondemos aos elementos do ambiente. A cada estímulo externo (como o cheiro de um alimento ou o som de uma buzina) e mesmo interno (como dor ou sensação de fome), o organismo reage, ou seja, de certo modo “responde a essas perguntas:
De onde vem o estímulo?
Como meu corpo reage a esse estímulo?
Isto me fará bem ou mal?
Já tive essa sensação antes?
Esse processo ocorre no sistema nervoso central de maneira tão instantânea que a nossa consciência não tem como identificar todas as suas etapas, nem os milhares de estímulos que o corpo recebe a todo instante.
Para compreender melhor como percebemos os estímulos externos e como respondemos a eles, é fundamental reconhecer o sistema que forma a rede de comunicação do corpo.

Por que precisamos de um sistema nervoso?
Seu cérebro é o órgão mais importante de seu corpo. Ele controla tudo o que você faz, seus movimentos, seus pensamentos e sua memória. Muitas vezes ele não age diretamente, mas pode controlar pequenas quantidades de substâncias químicas do sangue, que, por sua vez, têm um forte efeito sobre outra parte do corpo.
 
Embora pareça muito simples, o cérebro é imensamente complicado. E uma massa de tecido esbranquiçado, bastante mole ao tato, que ocupa cerca de metade do volume da cabeça. Fica posicionado no alto da cabeça, acima dos olhos e dos ouvidos, estendendo para trás e para a parte inferior da cabeça.
Quase tão importante quanto o cérebro é o restante do sistema nervoso. A medula espinhal estende-se do cérebro para baixo, ao longo da coluna, O cérebro e a medula espinhal formam o sistema nervoso central.
Ao longo do comprimento da medula espinhal saem nervos semelhantes a fios que se dividem e se ligam com quase todas as partes do corpo. Os nervos transportam mensagens dos órgãos dos sentidos para o cérebro, e também instruções do cérebro para outras partes do corpo. O cérebro funciona como uma rede telefônica complicada, mas muito compacta, com um complexo fluxo de mensagens que chegam, são selecionadas e depois dirigidas a seu destino apropriado.









SISTEMA CIRCULATÓRIO

Sistema circulatório

O coração e os vasos sanguíneos e o sangue formam o sistema cardiovascular ou circulatório. A circulação do sangue permite o transporte e a distribuição de nutrientes, gás oxigênio e hormônios para as células de vários órgãos. O sangue também transporta resíduos do metabolismo para que possam ser eliminados do corpo.

O coração
O coração de uma pessoa tem o tamanho aproximado de sua mão fechada, e bombeia o sangue para todo o corpo, sem parar; localiza-se no interior da cavidade torácica, entre os dois pulmões. O ápice (ponta do coração) está voltado para baixo, para a esquerda e para frente. O peso médio do coração é de aproximadamente 300 gramas, variando com o tamanho e o sexo da pessoa.
Observe o esquema do coração humano, existem quatro cavidades:
  • Átrio direito e átrio esquerdo, em sua parte superior;
  • Ventrículo direito e ventrículo esquerdo, em sua parte inferior.
O sangue que entra no átrio direito passa para o ventrículo direito e o sangue que entra no átrio esquerdo passa para o ventrículo esquerdo. Um átrio não se comunica com o outro átrio, assim como um ventrículo não se comunica com o outro ventrículo. O sangue passa do átrio direito para o ventrículo direito através da valva atrioventricular direita; e passa do átrio esquerdo para o ventrículo esquerdo através da valva atrioventricular esquerda.


O coração humano um órgão cavitário (que apresenta cavidade), basicamente constituído por três camadas:
  • Pericárdio – é a membrana que reveste externamente o coração, como um saco. Esta membrana propicia uma superfície lisa e escorregadia ao coração, facilitando seu movimento ininterrupto;
  • Endocárdio – é uma membrana que reveste a superfície interna das cavidades do coração;
  • Miocárdio – é o músculo responsável pelas contrações vigorosas e involuntárias do coração; situa-se entre o pericárdio e o endocárdio.
Quando, por algum motivo, as artérias coronárias – ramificações da aorta – não conseguem irrigar corretamente o miocárdio, pode ocorrer a morte (necrose) de células musculares, o que caracteriza o infarto do miocárdio.
Existem três tipos básicos de vasos sanguíneos em nosso corpo: artériasveias e capilares.

Artérias
As artérias são vasos de paredes relativamente espessa e muscular, que transporta sangue do coração para os diversos tecidos do corpo. A maioria das artérias transporta sangue oxigenado (rico em gás oxigênio), mas as artérias pulmonares transportam sangue não oxigenado (pobre em gás oxigênio) do coração até os pulmões. A aorta é a artéria mais calibrosa (de maior diâmetro) do corpo humano.
FONTE:SÓ BIOLOGIA.






O SISTEMA RESPIRATÓRIO

A respiração

A respiração ocorre dia e noite, sem parar. Nós podemos sobreviver determinado tempo sem alimentação, mas não conseguimos ficar sem respirar por mais de alguns poucos minutos.  Você sabe que todos os seres vivos precisam de energia para viver e que essa energia é obtida dos alimentos. O nosso organismo obtém energia dos alimentos pelo processo da respiração celular, realizada nas mitocôndrias, com a participação do gás oxigênio obtido no ambiente.
glicose é um os principais “combustíveis” utilizados pelas células vivas na respiração. Observe o que ocorre nas nossas células:
Glicose + gás oxigênio ----> gás carbônico + água + energia
É esse tipo de fenômeno que ocorre sem parar no interior das células viva, liberando a energia que garante a atividade dos nossos órgãos por meio do trabalho das células.
A respiração pode ser entendida sob dois aspectos:
  • O mecanismo por meio da qual a energia química contida nos alimentos é extraída nas mitocôndrias e usada para manter o organismo em atividades, esse mecanismo é a respiração celular;
  • O conjunto de processos de troca do organismo com o ambiente externo que permite a obtenção de gás oxigênio e a eliminação do gás carbônico.
Estudaremos a respiração segundo esse último aspecto. Veremos, portanto, como o gás oxigênio é absorvido do ar atmosférico e chega às nossas células; e como o gás carbônico produzido durante a respiração celular é eliminado do organismo.

O sistema respiratório

O sistema respiratório humano é formado pelos seguintes órgãos, em seqüência: narizfaringe,laringetraquéiabrônquios e pulmões.
 
Na respiração ocorrem dois tipos de movimento: a inspiração e a expiração de ar. Na inspiração, o ar atmosférico penetra pelo nariz e chega aos pulmões; na expiração, o ar presente nos pulmões é eliminado para o ambiente externo.
O ar entra em nosso corpo por duas cavidades existentes no nariz: as cavidades nasais direita e esquerda. Elas são separadas completamente por uma estrutura chamada septo nasal; comunicam-se com o exterior pelas aberturas denominadas narinas e com a faringe pelos cóanos.  As cavidades nasais são revestidas internamente pela mucosa nasal. Essa mucosa contém um conjunto de pêlos junto as narinas e fabrica uma secreção viscosa chamada muco.
Os pêlos e o muco atuam como filtros capazes de reter microorganismos e partículas sólidas diversas que penetram no nariz com o ar.  Por isso, devemos inspirar pelo nariz e não pela boca: o ar inspirado pelo nariz chega aos pulmões mais limpo do que o ar inspirado pela boca. Além de filtrado, o ar é também adequadamenteaquecido e umidificado no nariz.





O SISTEMA DIGESTIVO



O sistema digestório humano
Para viver, crescer e manter o nosso organismo, precisamos consumir alimentos.
Mas o que acontece com os alimentos que ingerimos? Como os nutrientes dos alimentos, chegam às células do nosso corpo?
Para permanecer vivos, renovar continuamente as células, desenvolver o nosso corpo e manter as atividades vitais, necessitamos de alimentos, pois são eles que fornecem energia para o nosso corpo.
Estrutura do sistema digestório
Após uma refeição, os nutrientes presentes nos alimentos devem chegar às células. No entanto, a maioria deles não as atinge diretamente. Precisam ser transformadas para então, nutrir o nosso corpo. Isto porque as células só conseguem absorver nutrientes simples e esse processo de “simplificação” recebe o nome dedigestão.
As enzimas digestórias
O nosso corpo produz vários tipos de enzimas digestórias. Cada tipo de enzima é capaz de digerir somente determinada espécie de molécula presente nos alimentos. Assim, as amilasesação as enzimas que atuam somente sobre o amido; as proteases agem sobre as proteínas; as lípases sobre os lipídios, e assim por diante.
Há substâncias que nenhuma enzima humana é capaz de digerir. Uma delas é a celulose, que participa da formação da parede das células vegetais. Como a celulose é uma molécula grande demais para ser absorvida e não é digerida, ela é eliminada com as fezes.

Tubo digestório
O tubo digestório é composto pelos seguintes órgãos: bocafaringeesôfagoestômago,intestino delgado e intestino grosso.

 


Boca
A boca é a primeira estrutura do sistema digestório. Experimente abrir a sua boca. A abertura que se forma entre o lábio superior e o inferior se chama fenda bucal. Ela serve de comunicação do tubo digestório com o meio externo; é por ela que entram os alimentos. O “céu da boca” é também chamado de véu palatino ou palato duro. Mais para o fundo está a “campainha” ou úvula palatina.
O arco dental superior e o arco dental inferior são as estruturas em forma de arco em que os dentes estão dispostos e fixos.
O assoalho da boca é ocupado pela língua. Ela contribui para a mistura dos alimentos com a saliva, mantém o alimento junto aos dentes, empurra o alimento para a faringe, limpa os dentes e é o órgão importante da fala. A língua apresenta ainda as papilas linguais, estruturas responsáveis pela gustação.


Anexas à boca estão três pares de glândulas salivares, que são órgãos produtores de saliva.
saliva contém uma enzima do tipo amilase, chamada ptialina, que age sobre o amido e o transforma em maltose, uma variedade de açúcar formada pela união de duas moléculas de glicose.







SISTEMA REPRODUTOR




O Sistema Genital

Mudanças no corpo
A descoberta do sexo acontece com a descoberta do corpo. Moças e rapazes costumam acompanhar atentamente as mudanças que ocorrem nos seus órgãos sexuais externos. Essas mudanças são provocadas pela ação de hormônios.
As características sexuais primárias, visíveis nos órgãos genitais, são determinadas geneticamente e estão presentes desde o nascimento, tanto no homem como na mulher.

O corpo masculino
As principais modificações visíveis no corpo masculino ao longo da adolescência estão descritas abaixo.
Os testículos (dentro do saco escrotal) crescem primeiro e, pouco tempo depois, o pênis. Na puberdade, os pêlos surgem em diversos locais: no rosto, nas axilas, no peito e nas áreas próximas aos testículos. A voz também sofre mudanças.
Esse conjunto de características que se definem na puberdade, em conseqüência da ação hormonal, recebe o nome de características sexuais secundárias. Estas, porém, não obedecem a padrões rígidos. Adolescentes de mesma idade podem apresentar diferenças significativas em relação à estatura do corpo, quantidade de pêlos, tamanho do pênis, timbre de voz etc. O grupo étnico a que pertence o indivíduo, a herança genética, hábitos alimentares, problemas de saúde, dentre outros fatores, são responsáveis por essas diferenças.
Assim, colegas de mesma idade que a sua podem ser mais altos ou mais baixos que você ou terem a voz mais ou menos grave que a sua, por exemplo. Isto não deve preocupá-lo. As pessoas são diferentes e apresentam ritmos desiguais de desenvolvimento do corpo. É importante gostar de você, aprendendo a cuidar e valorizar o seu próprio corpo.
Veja as principais modificações visíveis no corpo masculino, ao longo do tempo.
Os rapazes possuem uma pequena quantidade de hormônios sexuais femininos, as garotas, uma pequena quantidade de hormônios sexuais masculinos. Na puberdade, às vezes, um pequeno desequilíbrio na quantidade desses hormônios pode provocar um ligeiro crescimento das mamas nos rapazes ou pêlos em excesso nas garotas. Em geral, isso desaparece com o tempo, mas, se persistir, o mais aconselhável é procurar orientação médica.
Na região genital, encontramos o pênis e o saco escrotal.
Pênis e a Ejaculação – O pênis é um órgão de forma cilíndrica e constituído principalmente por tecido erétil, ou seja, que tem capacidade de se erguer. Com a excitação sexual, esse tecido e banhado e preenchido por maior quantidade de sangue, o que torna o pênis ereto e rígido. Na ponta do pênis, há a glande (a “cabeça”), que pode estar coberta pelo prepúcio.
Na glande, há o orifício da uretra, canal que no corpo masculino se comunica tanto com o sistema urinário quanto com o sistema reprodutor. O tamanho do pênis varia entre os homens e não tem relação biológica com fertilidade e nem com potência sexual.

Quando o homem é estimulado, como ocorre numa relação sexual, culmina com o esperma sendo lançado para fora do corpo masculino sob a forma de jatos. Esse fenômeno chama-se ejaculação.
O esperma é ejaculado através da uretra, por onde a urina também é eliminada. Durante uma ejaculação normal são expelidos de 2 a 4 mililitros de esperma; cada mililitro contém aproximadamente 100 milhões de espermatozóides.






SISTEMAS DO CORPO HUMANO


2.    Organização Celular:

Nos seres vivos, uma enorme quantidade de moléculas inorgânicas e orgânicas se reúne, formando a célula. A célula é a unidade fundamental dos seres vivos, sendo capaz, por exemplo, de se nutrir, crescer e reproduzir. Muito pequena – possui aproximadamente a centésima parte de um milímetro –, só pode ser vista pelo microscópio.
As bactérias, os protozoários e alguns outros tipos de seres vivos são unicelulares; mas a maioria é pluricelular. O corpo humano, por exemplo, contém mais ou menos 60 trilhões de células.
As células semelhantes, nos seres pluricelulares, se reúnem, com o mesmo tipo de função, formando um tecido.Tecidos semelhantes formam um órgão. Órgãos com funções semelhantes se organizam em sistemas ou aparelhos.O conjunto de sistemas forma um organismo.
No corpo humano, por exemplo, o conjunto de células nervosas forma o tecido nervoso. O encéfalo, a medula e os nervos formam o sistema nervoso, este responsável pela coordenação entre diferentes partes do corpo e pela integração do organismo com o ambiente.
Mas a organização dos seres vivos não termina com a formação de um organismo. Sabemos que os seres vivos interagem com o ambiente, inclusive com os outros seres vivos. Organismos da mesma espécie agrupam-se numa determinada região, formando uma população. A população mantém, relações com populações de outras espécies que habitam o mesmo local, formando uma comunidade. Uma comunidade representa o conjunto de todas as espécies vivas que habitam determinado ambiente, como uma floresta. A comunidade influi nos fatores físicos e químicos do ambiente – como chuva, o solo e a temperatura – e esse fatores também influi na comunidade.
O conjunto constituído por seres vivos, fatores físicos e fatores químicos, é chamado de ecossistema, ex: uma floresta. E a soma de todos os ecossistemas do planeta formam a biosfera.


3.    Nutrição, Crescimento, Respiração e Metabolismo:

Um organismo vivo é instável e frágil. As proteínas e outras moléculas orgânicas presentes no ser vivo se desgastam com o tempo. A estrutura do ser vivo só pode ser mantida à custa de uma substituição permanente de suas moléculas e de muitas de suas células.
A nutrição não só garante ao ser vivo a reconstrução das partes desgastadas, mas também a formação de novas células, durante o período de crescimento. Esse crescimento, que se faz pela multiplicação de células no interior do corpo, é chamado de crescimento por intuscepção. Outra forma de crescimento é chamada de crescimento por decomposição ou aposição, um exemplo, é o cristal (matéria bruta) que pode crescer pela adição de novas moléculas à sua superfície.
Boa parte dos alimentos digeridos serve como fonte de energia para o organismo. Várias moléculas orgânicas de alimento podem ser utilizadas como combustível, mas é mais vantajoso para o ser vivo usar um açúcar, a glicose.
A glicose (C6H12O6) é uma molécula orgânica e reage com o oxigênio do ar (O2), transformando-se em gás carbônico (CO2) e água (H2O). Nessa transformação, a molécula de glicose é quebrada, liberando energia. Esta, por sua vez, é utilizada nas atividades do organismo, como o movimento, a produção de calor, a transmissão de impulso nervoso ou a construção de grandes moléculas orgânicas durante o processo de reconstrução ou crescimento do corpo. Esse processo de quebra da glicose chama-se respiração celular.
O organismo pode construir grandes moléculas formadoras de partes de células – esse processo é chamado anabolismo (ana = erguer), que são transformações de síntese ou construção.E quebrar moléculas de alimento, obtendo energia – processo denominado catabolismo (cata = para baixo), que são transformações de análise ou decomposição.
O conjunto dos dois processos é chamado metabolismo (metabole = transformar).


Nutrição Autotrófica e Heterotrófica:
Nutrição Autotrófica (auto = próprio; trofo = alimento):
Realizada apenas pelas plantas, algas e por certas bactérias. O organismo é capaz de produzir todas as moléculas orgânicas do seu corpo a partir de substâncias inorgânicas que retiram do ambiente, como o gás carbônico, água e sais minerais. O organismo vegetal usa a energia do Sol, que é absorvida pela clorofila. Esse fenômeno, chamado fotossíntese, produz substâncias orgânicas para o organismo e libera oxigênio na atmosfera.
Nutrição Heterotrófica (hetero = diferente):
Os animais, os protozoários, os fungos e a maioria das bactérias não são capazes de realizar fotossíntese. Esses seres precisam ingerir moléculas orgânicas prontas.


4. Estímulos ao Ambiente:

Todos os seres vivos são capazes de reagir a estímulos ou modificações do ambiente, ou seja, todos possuem irritabilidade.
Nos vegetais, as reações aos estímulos costumam ser mais lentas do que nos animais, por exemplo, pelo crescimento do caule em direção à luz ou pelo crescimento das raízes em direção ao solo. Esse fenômeno vegetal de irritabilidade é chamado tropismo.
Em algumas plantas, como a sensitiva ou dormideira, a reação pode ser mais rápida: um simples contato externo provoca o fechamento das folhas em segundos. Esse fechamento se deve à diminuição na pressão da água existente numa dilatação na base das folhas. Mecanismos semelhantes ocorrem com plantas carnívoras, que capturam pequenos animais.
Todos os seres vivos têm irritabilidade, mas só os animais possuem sensibilidade. Sensibilidade é a capacidade de reagir de diferentes formas aos estímulos ambientais.
As formas que os seres vivos têm de reagir ao ambiente são adaptativas, isto é, são formas que contribuem para a sobrevivência ou a reprodução da espécie.


5. Homeostase:
A propriedade do ser vivo de manter relativamente constante seu meio interno é chamada homeostase. O ser vivo não muda sua composição química e suas características físicas.
Com a homeostase conseguimos manter constantes, por exemplo, a temperatura, a quantidade de água no organismo e a concentração de diversas substâncias presentes no corpo.
A homeostase é importante para a manutenção da vida. Se o nosso ambiente interno mudar muito, ficando, por exemplo, excessivamente quente ou muito frio ou demasiadamente ácido, as reações químicas podem parar e o indivíduo morre.


6. Reprodução e Hereditariedade:


O ser vivo envelhece e morre, mas antes disso ele se reproduz. Os filhotes são semelhante aos pais, esse fenômeno chama-se hereditariedade.
Quanto à reprodução, ela pode ser assexuada ou sexuada.

- O gene e o Controle das Características Hereditárias: a reprodução e a hereditariedade dependem do DNA (ácido desoxirribonucléico). O DNA se localiza em filamentos chamados cromossomos, no interior das células.
A estrutura conhecida como gene corresponde a um segmento ou pedaço da molécula de DNA. Os genes contêm as informações responsáveis pelas características do indivíduo. O organismo dos seres vivos trabalha de acordo com as ordens do DNA.
As características de um organismo não dependem apenas do DNA, o meio ambiente também é importante. As características são o resultado de um trabalho conjunto do gene e do meio ambiente.
Outra propriedade do DNA da qual a hereditariedade depende é da sua capacidade de se duplicar, formando cópias exatamente iguais.

- Reprodução Assexuada: nessa reprodução um pedaço do corpo do ser vivo se separa, cresce e origina um novo indivíduo.Na reprodução assexuada, os decendentes recebem cópias iguais do DNA do indivíduo original e, conseqüentemente, possuem as mesmas características

- Reprodução Sexuada: é o tipo de reprodução realizada pela união de células especializadas, o gameta. Na maioria dos casos, a produção de gametas está ligada a uma diferença de sexo nos indivíduos adultos: o sexo feminino, produz o gameta feminino chamado óvulo; o sexo masculino, produz o gameta masculino denominado espermatozóide.
Nos vegetais os nomes são diferentes: o gameta feminino é o oosfera, e o masculino é o anterozóide.
Quando ocorre a fecundação – união do espermatozóide com o óvulo – forma-se o zigoto ou célula-ovo. O zigoto se divide várias vezes formando assim um novo indivíduo. Esse indivíduo possuirá genes da mãe e do pai; suas características serão resultado de uma combinação das características paternas e maternas.


7. Evolução:

É o processo pelo qual os seres vivos se transformam ao longo do tempo.

- Mutação: o mecanismo de hereditariedade garante que os filhos sejam semelhantes aos pais. Mas se esse mecanismo fosse infalível, as espécies não se modificariam ao longo do tempo. As espécies hoje existentes são resultantes de espécies que existiram no passado e que sofreram transformações.Isso se deve, porque, às vezes, o DNA produz cópias com erro, que pode ser causado tanto por uma falha durante a duplicação, como pela exposição do organismo à radiatividade ou a certos produtos químicos. Surge assim, uma molécula-filha, diferente da original. Isto se chama Mutação;

- Seleção Natural: quando a mutação é vantajosa ela tende a se espalhar pela população. Mas quando ela é prejudicial ela fica rara e pode desaparecer. O processo pelo qual o ambiente determina quais os organismos com maior possibilidade de sobrevivência é chamado de seleção natural. A idéia de seleção natural foi desenvolvida pelo cientista Charles Darwin.

- As mariposas de Manchester: essas mariposas são um caso clássico de seleção natural. Com o escurecimento do tronco das árvores, depois da instalação de fábricas próximas ao bosque, o número de mariposas escuras aumentou. Hoje, porém, com o controle da poluição na Inglaterra, os troncos voltaram a ficar claros e o número de mariposas brancas aumentou.

- Adaptações de animais e plantas: Os vegetais são organismos que se originaram de seres que no passado tinham nutrição autotrófica. O corpo ramificado das plantas, principalmente árvores, com a grande superfície de folhas funcionando como coletores de energia solas, é uma adaptação ao modo autotrófico de vida.
Já os animais são provenientes de seres que tinham nutrição heterotrófica. O corpo compacto, os músculos e o sistema nervoso e sensorial são adaptações que facilitam a busca de alimento e o deslocamento do animal.
Existem muitos organismos que não podem ser representados como animais ou vegetais, pois se mantiveram parecidos com os seres iniciais e não chegaram a desenvolver estruturas típicas de animais e vegetais. Esses organismos estão representados pelas bactérias, pelos protozoários, por algumas algas e pelos fungos.

Autoria: Rachel Duarte


Escrito por ISABEL-F.M.I.TORRES.FROTA às 07h07
[ (0) Comente  ] [ envie esta mensagem ] [ ]




CONCURSO DE CAMOCIM - BIOLOGIA


2.    Organização Celular:

Nos seres vivos, uma enorme quantidade de moléculas inorgânicas e orgânicas se reúne, formando a célula. A célula é a unidade fundamental dos seres vivos, sendo capaz, por exemplo, de se nutrir, crescer e reproduzir. Muito pequena – possui aproximadamente a centésima parte de um milímetro –, só pode ser vista pelo microscópio.
As bactérias, os protozoários e alguns outros tipos de seres vivos são unicelulares; mas a maioria é pluricelular. O corpo humano, por exemplo, contém mais ou menos 60 trilhões de células.
As células semelhantes, nos seres pluricelulares, se reúnem, com o mesmo tipo de função, formando um tecido.Tecidos semelhantes formam um órgão. Órgãos com funções semelhantes se organizam em sistemas ou aparelhos.O conjunto de sistemas forma um organismo.
No corpo humano, por exemplo, o conjunto de células nervosas forma o tecido nervoso. O encéfalo, a medula e os nervos formam o sistema nervoso, este responsável pela coordenação entre diferentes partes do corpo e pela integração do organismo com o ambiente.
Mas a organização dos seres vivos não termina com a formação de um organismo. Sabemos que os seres vivos interagem com o ambiente, inclusive com os outros seres vivos. Organismos da mesma espécie agrupam-se numa determinada região, formando uma população. A população mantém, relações com populações de outras espécies que habitam o mesmo local, formando uma comunidade. Uma comunidade representa o conjunto de todas as espécies vivas que habitam determinado ambiente, como uma floresta. A comunidade influi nos fatores físicos e químicos do ambiente – como chuva, o solo e a temperatura – e esse fatores também influi na comunidade.
O conjunto constituído por seres vivos, fatores físicos e fatores químicos, é chamado de ecossistema, ex: uma floresta. E a soma de todos os ecossistemas do planeta formam a biosfera.


3.    Nutrição, Crescimento, Respiração e Metabolismo:

Um organismo vivo é instável e frágil. As proteínas e outras moléculas orgânicas presentes no ser vivo se desgastam com o tempo. A estrutura do ser vivo só pode ser mantida à custa de uma substituição permanente de suas moléculas e de muitas de suas células.
A nutrição não só garante ao ser vivo a reconstrução das partes desgastadas, mas também a formação de novas células, durante o período de crescimento. Esse crescimento, que se faz pela multiplicação de células no interior do corpo, é chamado de crescimento por intuscepção. Outra forma de crescimento é chamada de crescimento por decomposição ou aposição, um exemplo, é o cristal (matéria bruta) que pode crescer pela adição de novas moléculas à sua superfície.
Boa parte dos alimentos digeridos serve como fonte de energia para o organismo. Várias moléculas orgânicas de alimento podem ser utilizadas como combustível, mas é mais vantajoso para o ser vivo usar um açúcar, a glicose.
A glicose (C6H12O6) é uma molécula orgânica e reage com o oxigênio do ar (O2), transformando-se em gás carbônico (CO2) e água (H2O). Nessa transformação, a molécula de glicose é quebrada, liberando energia. Esta, por sua vez, é utilizada nas atividades do organismo, como o movimento, a produção de calor, a transmissão de impulso nervoso ou a construção de grandes moléculas orgânicas durante o processo de reconstrução ou crescimento do corpo. Esse processo de quebra da glicose chama-se respiração celular.
O organismo pode construir grandes moléculas formadoras de partes de células – esse processo é chamado anabolismo (ana = erguer), que são transformações de síntese ou construção.E quebrar moléculas de alimento, obtendo energia – processo denominado catabolismo (cata = para baixo), que são transformações de análise ou decomposição.
O conjunto dos dois processos é chamado metabolismo (metabole = transformar).


Nutrição Autotrófica e Heterotrófica:
Nutrição Autotrófica (auto = próprio; trofo = alimento):
Realizada apenas pelas plantas, algas e por certas bactérias. O organismo é capaz de produzir todas as moléculas orgânicas do seu corpo a partir de substâncias inorgânicas que retiram do ambiente, como o gás carbônico, água e sais minerais. O organismo vegetal usa a energia do Sol, que é absorvida pela clorofila. Esse fenômeno, chamado fotossíntese, produz substâncias orgânicas para o organismo e libera oxigênio na atmosfera.
Nutrição Heterotrófica (hetero = diferente):
Os animais, os protozoários, os fungos e a maioria das bactérias não são capazes de realizar fotossíntese. Esses seres precisam ingerir moléculas orgânicas prontas.


4. Estímulos ao Ambiente:

Todos os seres vivos são capazes de reagir a estímulos ou modificações do ambiente, ou seja, todos possuem irritabilidade.
Nos vegetais, as reações aos estímulos costumam ser mais lentas do que nos animais, por exemplo, pelo crescimento do caule em direção à luz ou pelo crescimento das raízes em direção ao solo. Esse fenômeno vegetal de irritabilidade é chamado tropismo.
Em algumas plantas, como a sensitiva ou dormideira, a reação pode ser mais rápida: um simples contato externo provoca o fechamento das folhas em segundos. Esse fechamento se deve à diminuição na pressão da água existente numa dilatação na base das folhas. Mecanismos semelhantes ocorrem com plantas carnívoras, que capturam pequenos animais.
Todos os seres vivos têm irritabilidade, mas só os animais possuem sensibilidade. Sensibilidade é a capacidade de reagir de diferentes formas aos estímulos ambientais.
As formas que os seres vivos têm de reagir ao ambiente são adaptativas, isto é, são formas que contribuem para a sobrevivência ou a reprodução da espécie.


5. Homeostase:
A propriedade do ser vivo de manter relativamente constante seu meio interno é chamada homeostase. O ser vivo não muda sua composição química e suas características físicas.
Com a homeostase conseguimos manter constantes, por exemplo, a temperatura, a quantidade de água no organismo e a concentração de diversas substâncias presentes no corpo.
A homeostase é importante para a manutenção da vida. Se o nosso ambiente interno mudar muito, ficando, por exemplo, excessivamente quente ou muito frio ou demasiadamente ácido, as reações químicas podem parar e o indivíduo morre.


6. Reprodução e Hereditariedade:


O ser vivo envelhece e morre, mas antes disso ele se reproduz. Os filhotes são semelhante aos pais, esse fenômeno chama-se hereditariedade.
Quanto à reprodução, ela pode ser assexuada ou sexuada.

- O gene e o Controle das Características Hereditárias: a reprodução e a hereditariedade dependem do DNA (ácido desoxirribonucléico). O DNA se localiza em filamentos chamados cromossomos, no interior das células.
A estrutura conhecida como gene corresponde a um segmento ou pedaço da molécula de DNA. Os genes contêm as informações responsáveis pelas características do indivíduo. O organismo dos seres vivos trabalha de acordo com as ordens do DNA.
As características de um organismo não dependem apenas do DNA, o meio ambiente também é importante. As características são o resultado de um trabalho conjunto do gene e do meio ambiente.
Outra propriedade do DNA da qual a hereditariedade depende é da sua capacidade de se duplicar, formando cópias exatamente iguais.

- Reprodução Assexuada: nessa reprodução um pedaço do corpo do ser vivo se separa, cresce e origina um novo indivíduo.Na reprodução assexuada, os decendentes recebem cópias iguais do DNA do indivíduo original e, conseqüentemente, possuem as mesmas características

- Reprodução Sexuada: é o tipo de reprodução realizada pela união de células especializadas, o gameta. Na maioria dos casos, a produção de gametas está ligada a uma diferença de sexo nos indivíduos adultos: o sexo feminino, produz o gameta feminino chamado óvulo; o sexo masculino, produz o gameta masculino denominado espermatozóide.
Nos vegetais os nomes são diferentes: o gameta feminino é o oosfera, e o masculino é o anterozóide.
Quando ocorre a fecundação – união do espermatozóide com o óvulo – forma-se o zigoto ou célula-ovo. O zigoto se divide várias vezes formando assim um novo indivíduo. Esse indivíduo possuirá genes da mãe e do pai; suas características serão resultado de uma combinação das características paternas e maternas.


7. Evolução:

É o processo pelo qual os seres vivos se transformam ao longo do tempo.

- Mutação: o mecanismo de hereditariedade garante que os filhos sejam semelhantes aos pais. Mas se esse mecanismo fosse infalível, as espécies não se modificariam ao longo do tempo. As espécies hoje existentes são resultantes de espécies que existiram no passado e que sofreram transformações.Isso se deve, porque, às vezes, o DNA produz cópias com erro, que pode ser causado tanto por uma falha durante a duplicação, como pela exposição do organismo à radiatividade ou a certos produtos químicos. Surge assim, uma molécula-filha, diferente da original. Isto se chama Mutação;

- Seleção Natural: quando a mutação é vantajosa ela tende a se espalhar pela população. Mas quando ela é prejudicial ela fica rara e pode desaparecer. O processo pelo qual o ambiente determina quais os organismos com maior possibilidade de sobrevivência é chamado de seleção natural. A idéia de seleção natural foi desenvolvida pelo cientista Charles Darwin.

- As mariposas de Manchester: essas mariposas são um caso clássico de seleção natural. Com o escurecimento do tronco das árvores, depois da instalação de fábricas próximas ao bosque, o número de mariposas escuras aumentou. Hoje, porém, com o controle da poluição na Inglaterra, os troncos voltaram a ficar claros e o número de mariposas brancas aumentou.

- Adaptações de animais e plantas: Os vegetais são organismos que se originaram de seres que no passado tinham nutrição autotrófica. O corpo ramificado das plantas, principalmente árvores, com a grande superfície de folhas funcionando como coletores de energia solas, é uma adaptação ao modo autotrófico de vida.
Já os animais são provenientes de seres que tinham nutrição heterotrófica. O corpo compacto, os músculos e o sistema nervoso e sensorial são adaptações que facilitam a busca de alimento e o deslocamento do animal.
Existem muitos organismos que não podem ser representados como animais ou vegetais, pois se mantiveram parecidos com os seres iniciais e não chegaram a desenvolver estruturas típicas de animais e vegetais. Esses organismos estão representados pelas bactérias, pelos protozoários, por algumas algas e pelos fungos.

Autoria: Rachel Duarte






A CONSERVAÇÃO DO SOLO





CONSERVAÇÃO DO SOLO
Quando o solo não recebe tratamento adequado ele pode perder suas propriedades naturais e se tornar infértil. Para sua conservação, algumas medidas podem ser tomadas:

Conservação da vegetação nativa

Uma das mais importantes medidas para conservar o solo é não praticar o desmatamento. A vegetação natural possui características que conservam o solo.

Combate à erosão

Feito através do sistema de curvas de nível. Valetas em sentido circular são feitas no solo de regiões altas (montanhas, morros, serras). Estas valetas absorvem a água, evitando assim as enxurradas que levam as terras.

Reflorestamento

A falta de vegetação pode facilitar a ocorrência da erosão. Com a plantação de árvores em regiões que sofreram desmatamento, evita-se a erosão. O eucalipto e o pinheiro são as árvores mais utilizadas neste processo, pois suas raízes “seguram” a terra e absorvem parte da água.

Rotação de cultura

A área de plantações pode ser dividida em partes, de maneira que uma delas ficará sempre descansando. As outras partes recebem o plantio de culturas diferentes. Após a colheita, ocorre uma rotação, sendo que a parte que havia descansado recebe o plantio e uma que foi usado vai para o descanso. Desta forma, evita-se o desgaste da terra (perda de nutrientes), dificultando sua infertilidade.

Contudo, de modo geral a atuação dos programas de conservação da água, se restringe basicamente a três níveis: a conservação da água na Bacia Hidrográfica, a conservação nos Sistemas Públicos de Abastecimento de Água e Esgotamento Sanitário e a conservação nos Sistemas Prediais. As ações de conservação da água nos Sistemas de Abastecimento de Água objetivam minimizar as perdas em tais sistemas. Conceitualmente, estas perdas podem ser referentes as representadas pela parcela não consumida de água, ou seja as físicas, e as perdas não físicas, aquelas que correspondem à água consumida e não registrada. Conforme Borges (2003) podem ser de caráter operacional ou por vazamentos, e ocorrem no trecho compreendido entre a captação de água bruta e o cavalete da economia.
Por sua vez, as práticas conservacionistas nos Sistemas de Esgotamento Sanitário, envolvem a concepção do saneamento ecológico. Segundo Gonçalves (2006), o Eco-saneamento fundamenta-se na separação das diferentes formas de águas residuárias nas suas origens e, através da reciclagem de água e de nutrientes, promove a redução no consumo de água e energia em atividades de saneamento. Para Mancuso; Santos (2003) o reúso pode ser definido como o aproveitamento de águas anteriormente utilizadas, para atender demandas de outras atividades ou de seu uso original. Quanto às ações de conservação da água nos sistemas prediais, referem-se às práticas de gerenciamento do uso da água nas edificações. Tais práticas incluem o uso racional através de: aparelhos economizadores de água, das práticas de manutenção predial e da adoção de sistemas de medição setorizada para habitação coletiva. Ainda contempla o uso de fontes alternativas de abastecimento de água para fins não potáveis como: a água cinza e a água de chuva.

Gonçalves (2006) apresenta um modelo de gerenciamento com linhas diferenciadas para o suprimento de água potável e não potável. Destacam-se as linhas de produção de águas residuárias domésticas para fins não potáveis:
a) águas Negras: trata-se das águas residuárias procedentes das bacias sanitárias, as quaisapresentam em seu conteúdo fezes, urina e papel higiênico;
b) águas Amarelas: refere-se às águas residuárias oriundas dos dispositivos processos separadores de urina e fezes, como os mictórios e as bacias sanitárias separadoras;
c) águas Cinza: são as águas servidas, oriundas de pontos de consumo como os lavatórios, chuveiros, banheiras, pias de cozinha, máquinas de lavar roupas e tanques.
 
Cumpre salientar que, nos sistemas prediais, prioritariamente aplicam-se as ações de uso raciona para posteriormente, então, adotarem-se as fontes alternativas de abastecimento. Ressalta-se que as fontes alternativas de água, classificam-se como fontes opcionais à água potável. Em se tratando de reciclagem das águas servidas e uso da água de chuva, podem ser aplicadas para finalidades não nobres, como: descarga sanitária, descarga de mictórios, limpeza de pátios e veículos, irrigação de jardins, desde que devidamente tratadas.
Mais tarde terminaremos as aulas de Ciências referente ao programa de professor básico I,avisando que as aulas de geografia estão no blog da isabel uol blog.

Você sabia que, apesar de serem utilizados amplamente como sinônimos, preservação e conservação são conceitos distintos?

O preservacionismo e o conservacionismo são correntes ideológicas que surgiram no fim do século XIX, nos Estados Unidos. Com posicionamento contra o desenvolvimentismo - uma concepção que defende o crescimento econômico a qualquer custo, desconsiderando os impactos ao ambiente natural e o esgotamento de recursos naturais – estas duas se contrapõem no que se diz respeito à relação entre o meio ambiente e a nossa espécie.

O primeiro, o preservacionismo, aborda a proteção da natureza independentemente de seu valor econômico e/ou utilitário, apontando o homem como o causador da quebra desse “equilíbrio”. De caráter explicitamente protetor, propõe a criação de santuários, intocáveis, sem sofrer interferências relativas aos avanços do progresso e sua consequente degradação. Em outras palavras, “tocar”, “explorar”, “consumir” e, muitas vezes, até “pesquisar”, tornão-se, então, atitudes que ferem tais princípios. De posição considerada mais radical, esse movimento foi responsável pela criação de parquesnacionais, como o Parque Nacional de Yellowstone, em 1872, nos Estados Unidos.

Já a segunda corrente, a conservacionista, contempla o amor à natureza, mas aliado ao seu uso racional e manejo criterioso pela nossa espécie, executando um papel de gestor e parte integrante do processo. Podendo ser identificado como o meio-termo entre o preservacionismo e o desenvolvimentismo, o pensamento conservacionista caracteriza a maioria dos movimentos ambientalistas, e é alicerce de políticas de desenvolvimento sustentável, que são aquelas que buscam um modelo de desenvolvimento que garanta a qualidade de vida hoje, mas que não destrua os recursos necessários às gerações futuras. Redução do uso de matérias-primas, uso de energias renováveis, redução do crescimento populacional, combate à fome, mudanças nos padrões de consumo, equidade social, respeito à biodiversidade e inclusão de políticas ambientais no processo de tomada de decisões econômicas são alguns de seus princípios. Inclusive, essa corrente propõe que se destinem áreas de preservação, por exemplo, em ecossistemas frágeis, com um grande número de espécies endêmicas e/ou em extinção, dentre outros.

Tais discussões começaram a ter espaço em nosso país apenas em meados da década de setenta, com a criação do Instituto Brasileiro do Meio Ambiente – IBAMA, quase vinte anos depois. Em razão de a temática ambiental ter sido incorporada em nosso dia a dia apenas nas últimas décadas, tais termos relativamente novos acabam sendo empregados sem muitos critérios – mesmo por profissionais como biólogos, pedagogos, jornalistas e políticos. Prova disso é que a própria legislação brasileira, que nem sempre considera correto o uso desses termos, atribui a proteção integral e “intocabilidade” à preservação; e conservação dos recursos naturais, com a utilização racional, garantindo sua sustentabilidade e existência para as futuras gerações, à conservação.






ESTUDO SOBRE A ÁGUA

A água pode ser encontrada em três estados físicos: 



A água pode mudar de estado físico como, por exemplo, ir do estado sólido para o líquido. Um exemplo disso é quando deixamos o gelo (estado sólido da água) fora da geladeira e ele derrete virando líquido. 

Existem nomes que representam cada uma destas mudanças de estados físicos, veja abaixo quais são: 



Para que aconteçam a fusão e a vaporização é necessário fornecer energia – aquecer – a água. 
Para que aconteçam a solidificação (mudança de estado liquido para o estado sólido) e a liquefação (do estado gasoso para o liquido) é preciso retirar energia – o calor – da água. 
evaporação da água no seu ciclo natural ocorre à temperatura ambiente e é lenta. A água ferve, do liquido para o gasoso, de forma muito mais rápida, por que ocorre a ebulição. 
O ponto de ebulição da água depende também do nível de pressão do ambiente. 
Ebulição e vaporação são, na realidade, tipos de vaporização



Propriedades da água
 Apresenta praticamente a mesma massa desde que o Planeta se formou. 

* É purificada pela evaporação e também pela penetração no solo, até os lençóis freáticos. 

* A água potável é cristalina, inodora, incolor e insípida. 

* É considerada solvente universal, propiciando a formação de misturas com outras substâncias. 

* Pode transportar substâncias e outros corpos. 

* Quando em repouso, apresenta sua superfície plana e horizontal. 

* Apresenta uma tensão superficial, isto é, capacidade de manter juntas as moléculas de sua superfície. 

* Uma torneira que goteja demonstra como a água se apega a si mesma. À medida que a água cai em gotas, cada gota fica um instante pendurada na torneira, estende-se, solta-se, e a seguir forma instantaneamente uma pequena bola. As moléculas da superfície da água mantêm-se tão coesamente ligadas entre si que a água pode sustentar objetos mais pesados que ela. A água salgada apresenta maior densidade do que água doce.



A chuva é um fenômeno climático que ocorre da seguinte forma:
1º - A água, quando é aquecida (pelo Sol ou outro processo de aquecimento), evapora e se transforma em vapor de água;

2º - Este vapor de água se mistura com o ar e, como é mais leve, começa a subir;

3º - Formam-se as nuvens carregadas de vapor de água (quando mais escura é a nuvem mais carregada de vapor de água condensado)

4º - Ao atingir altitudes elevadas ou encontrar massas de ar frias, o vapor de água condensa, transformando-se novamente em água;

5º - Como é pesada e não consegue sustentar-se no ar, a água acaba caindo em forma de chuva.

Existem regiões do mundo em que ocorrem poucas chuvas. Nos desertos (Saara, Atacama, Arábia), por exemplo, o índice de umidade é baixíssimo. Isto dificulta a formação de nuvens e das chuvas. Já em regiões como a Floresta Amazônica, as chuvas ocorrem em grande quantidade em função do alto índice de evaporação da água.

O vento é um fenômeno meteorológico formado pelo movimento do ar na atmosfera. O vento é gerado através de fenômenos naturais como, por exemplo, os movimentos de rotação e translação do Planeta Terra.

Existem vários fatores que podem influenciar na formação do vento, fazendo com que este possa ser mais forte (ventania) ou suave (brisa). Pressão atmosférica, radiação solar, umidade do ar e evaporação influenciam diretamente nas características do vento.

Em regiões mais altas, como no alto de montanhas por exemplo, o vento costuma ser mais forte, pois não há interferências das construções.

O vento é muito importante para o ser humano, pois facilita a dispersão dos poluentes e também pode gerar energia (energia eólica).

A atmosfera terrestre é composta por vários gases, que exercem uma pressão sobre a superficie da Terra. Essa pressão, denominada pressão atmosférica, depende da altitude do local, pois à medida que nos afastamos da superfície do planeta, o ar se torna cada vez mais rarefeito, e, portanto, exercendo uma pressão cada vez menor.

Troposfera

É a camada da atmosfera em que vivemos e respiramos. Ela vai do nível do mar até 12 km de altura. É nesta camada que ocorrem os fenômenos climáticos (chuvas, formação de nuvens, relâmpagos). É também na troposfera que ocorre a poluição do ar. Os aviões de transporte de cargas e passageiros voam nesta camada.
As temperaturas nesta camada podem variar de 40°C até –60°C. Quanto maior a altitude menor a temperatura.

Estratosfera

Esta camada ocupa uma faixa que vai do fim da troposfera (12 km de altura) até 50 km acima do solo. As temperaturas variam de –5°C a –70°C. Na estratosfera localiza-se a camada de ozônio, que funciona como uma espécie de filtro natural do planeta Terra, protegendo-a dos raios ultravioletas doSol. Aviões supersônicos e balões de medição climática podem atingir esta camada.

Mesosfera

Esta camada tem início no final da estratosfera e vai até 80 km acima do solo. A temperatura na mesosfera varia entre –10°C até –100°C . A temperatura é extremamente fria, pois não há gases ou nuvens capazes de absorver a energia solar. Nesta camada ocorre o fenômeno da aeroluminescência.

Termosfera

Tem início no final da mesosfera e vai até 500 km do solo. É a camada atmosférica mais extensa. É uma camada que atinge altas temperaturas, pois nela há oxigênio atômico, gás que absorve a energia solar em grande quantidade. As temperaturas na termosfera podem atingir os 1.000°C.

Exosfera

É a camada que antecede o espaço sideral. Vai do final da termosfera até 800 km do solo. Nesta camada as partículas se desprendem da gravidade do planeta Terra. As temperaturas podem atingir 1.000°C. É formada basicamente por metade de gás hélio e metade de hidrogênio.
Na exosfera ocorre o fenômeno da aurora boreal e também permanecem os satélites de transmissão de informações e também telescópios espaciais.


O ar rarefeito
É encontrado em grandes altitudes. Ao nível do mar, o ar é pesado, com uma massa estável de 1 kg por metro cúbico. À medida que subimos, a pressão do ar vai diminuindo. Assim, numa altitude de 3 km, a pressão do ar é de somente 700 g por metro cúbico, causando dificuldade de respiração.
As maiores altitudes em que vive o homem estão a 4 km de altura e os alpinistas que escalam os picos mais altos (de até 9 km de altura), tem que carregar máscaras de oxigênio para suportar o ar bastante rarefeito.

Ar comprimido
O ar pode ser comprimido através de bombas, compressores e outros aparelhos, para várias finalidades. O uso mais comum é encontrado nos pneus. No posto de gasolina ou no borracheiro, uma bomba elétrica chamada "compressor" enche um bujão de ar. Sempre que alguém coloca o bico da mangueira de ar no pneu, o bujão de ar solta o ar comprimido para dentro do pneu. Depois de um tempo, o compressor volta a carregar o bujão de ar.
O ar comprimido serve para manter um carro em movimento. Faz com que o pneu absorva os buracos e segure o carro nas curvas, mantendo a maciez do veículo e o conforto dos passageiros. O ar comprimido também pode ser usado para pistolas de pintura, enchimento de balões, pulverização de agrotóxicos (remédios contra doenças das plantações) etc.
Motores pneumáticos,
motores a vácuo,
locomotivas,
dispositivos para projeção de substâncias pulverizadas ou granuladas,
jatos de areia (para a indústria de vidro, por ex.),
jatos de cascalho.